
Building a Scalable Collaborative Web Filter
with Free and Open Source Software

Michael G. Noll
Hasso Plattner Institute, Germany

& University of Luxembourg, Luxembourg
michael.noll@hpi.uni-potsdam.de

Christoph Meinel
Hasso Plattner Institute, Germany

meinel@hpi.uni-potsdam.de

Abstract

In this case study, we describe the design and architec-
ture of a scalable collaborative web filtering service, Taggy-
Bear, which is powered by free and open source software.
We will introduce the reader to the ideas and concepts be-
hind TaggyBear, and discuss why we picked the software
components that form the basis of the service. We will
talk about how we combined or extended their functional-
ity to build the TaggyBear service, and provide some initial
benchmarking results and performance figures.

1. Introduction

In this paper, we will describe the design and architec-
ture of the social web filtering service TaggyBear, which
we have developed as part of an Internet Security research
project. Similar to traditional social bookmarking services
such as Delicious.com, TaggyBear allows users to book-
mark web pages and annotate these bookmarks with un-
structured keywords, so-called tags. Seen in this way,
TaggyBear can be used for tasks such as storing your book-
mark collection online, recommending interesting websites
to your friends, or knowledge acquisition. However, the
same data is also leveraged to create new services which
go beyond the standard bookmarking scheme. For exam-
ple, we have shown in a previous work [10] how to perform
web search personalization via social bookmarks by adding
a “personalization layer” on top of search engines.

In this paper, we focus our description of the TaggyBear
system on the social web filtering component which can be
used to filter unwanted or harmful Internet content. Users
can collaboratively categorize web pages, and mark them as
objectionable (e.g. pornographic content, violence, racism),
dangerous (e.g. phishing, malware) and the like. Figure 1
shows a screenshot of the TaggyBear browser extension

Figure 1. TaggyBear browser add-on

blocking access1 to an objectionable website because the
majority of users have rated it as pornographic.

The rest of the paper is organized as follows: In the next
section, we outline the concepts behind the TaggyBear ser-
vice in more detail, and the requirements that arise from
them. In section 3, we describe the system design and archi-
tecture that we have implemented with free and open source
software to meet these requirements, and we provide some
benchmarking results. Lastly, we summarize and discuss
our findings in section 5.

2. Scenario

2.1. Use Case: Social Web Filtering

The social web filtering approach of TaggyBear lever-
ages the “wisdom of the crowd” in the spirit of Wikipedia. It

1The user’s preferences determine which type of web pages should be
blocked, thus giving the user full freedom to shape her Internet experience
by herself.



allows end users to collaboratively rate and categorize web
pages, and analyzes and aggregates the collected data for
the purpose of web filtering. In turn, users can query Taggy-
Bear for the user community’s rating information about a
given web page so they can decide themselves whether they
do or do not want to retrieve/see the page. It is important
to note that any filtering happens on the client side since
TaggyBear only provides the necessary rating information
on request – it’s up to the client end point how it reacts
to this information2. This approach is very different from
current server-side filtering where access to web pages is
blocked on ISP level, for instance [3]. One could say that
TaggyBear acts as a kind of social “overlay” of the Internet,
and provides a true democracy of the web with regard to
content filtering.

2.2. Ratings

The main landing point for users is the TaggyBear web-
site. Here, they can perform tasks such as creating and shar-
ing bookmarks, browse their network of friends, et cetera.
In the context of social web filtering, they can also ask
TaggyBear for rating information about a web page. These
ratings are derived from social bookmarking data as we will
describe shortly. For any web page, TaggyBear may return
up to three different types of ratings:

• the user rating

• the community rating

• the system rating

The order of preference for the three rating types is de-
cided by the client software, or the end user (see the browser
add-on example in section 2.3). Please note that the distinc-
tion into three different rating types is also important for the
system design as we will see later.

The user rating of a web page is the rating provided by
the given user herself. The rating is the set of tags with
which the user annotated the bookmark of a web page. Tags
bear various kinds of semantic meanings [1, 7], and we have
shown in previous studies [9, 11] that they are often used for
classification purposes. This means that we can exploit tags
from the social bookmarking aspects of TaggyBear for so-
cial web filtering without putting another burden on the end
user – he even has an additional benefit from her bookmark-
ing activities!

In contrast to other social bookmarking services, there
is a voting element in tags on TaggyBear which transform

2For example, client software for individual end users should give full
control to its users. In a school environment however, the network ad-
ministrator might want to interface a central web proxy with TaggyBear to
enforce specific filtering actions.

tags to ratings as described in [8]. Prefixing a tag with a
minus sign “-” is defined as a negative vote (e.g. “-porn”),
whereas in any other case the tag counts as a positive vote.
Also, users can opt to make a bookmark private for privacy
reasons. In this case, neither the bookmark nor the resulting
rating is shared with other users.

The community rating of a web page is the aggregation
of all public user ratings. In the easiest case, the aggrega-
tion is the set of all tags and their associated votes. For
each tag, we keep track of the number of positive votes
and the number of totals votes. These can be used to cal-
culate percentages for a given tag, and determine whether
the majority of users voted for or against a specific tag.
For the context of this paper, we notate community ratings
as tag:pos:total; for example, porn:13:68 means
that 13 out of 68 users, 19%, voted positively on tag porn.

The system rating is a special rating provided by the
TaggyBear operators when and where needed. The purpose
of the system rating is two-fold. First, it is used to miti-
gate the cold-start problem where there isn’t a sufficiently
large amount of rating information available at the launch
phase of the service. Second, it is used to harden the ser-
vice against abuse and spam, e.g. to protect against “rating
bombs” that would result in preventing access to innocent
(and most notably, popular and highly visited) web pages.
On one hand, the system rating serves as a moderator func-
tion by providing an operator-managed whitelist and black-
list of web pages similar to services such as Google Safe
Browsing3. On the other hand, a client software is not re-
quired to honor the system rating at all, so the system rating
is a “voluntary” moderation feature and not a hidden type
of censorship.

user rating
research, science, weblab, phd, hpi, -porn
community rating
hpi:56:56, research:42:42, germany:26:31, ..., porn:0:1
system rating
(none)

Table 1. Exemplary ratings for the HPI home
page. For example, 26 out of 31 users voted
positively for the tag “germany”.

To give an impression of how such ratings would look
like in practice, consider the exemplary ratings for the home
page of the Hasso Plattner Institute, http://www.hpi.uni-
potsdam.de/, shown in table 1.

3http://code.google.com/apis/safebrowsing/



2.3. Clients

Since the main purpose of social web filtering is to
protect users from unwanted and harmful content as they
browse the Internet, we have developed a TaggyBear
browser add-on for Mozilla Firefox. Whenever a user visits
a new web page, the add-on queries the TaggyBear API for
rating information. Access to the web page will be blocked
(see figure 1) depending on the user’s preferences. In our
case, the order of preference for ratings is:

user rating > system rating > community rating

The end user’s own rating is the ultima ratio. The system
rating has precedence over the community rating to prevent
abuse of the service. The content of a blocked page is obfus-
cated, and a warning popup window informs the user why
the add-on triggered the protection mechanism. The popup
also comes with interface elements to ignore the warning
just temporarily or to permanently overwrite the commu-
nity rating with the user’s own, individual rating. The latter
allows the user to easily create her own whitelist and black-
list of web pages.

The browser add-on also provides interface elements to
create new bookmarks (“Tagmark” button in the exemplary
screenshot in figure 1) so that users don’t have to visit the
TaggyBear website, and interface elements to quickly rate
and categorize web pages into specific content categories
with a single click (“Porn” and “Not Porn” buttons in this
example).

Another way to use TaggyBear is to interface it with
web proxies such as Squid4 in a centrally managed network,
where the web proxies are configured to query TaggyBear
for rating information about any requested web pages and
block access depending on how the user community cate-
gorized these pages.

2.4. Requirements

We identified three main system requirements:

1. Real-time access and updates (read/write) for individ-
ual user data, including user ratings

2. Lookup performance (read) for ratings

3. Quality of community data

In terms of (1), users expect that any of their actions
such as creating or modifying bookmarks take effect im-
mediately. This requirement also means that user ratings –
which are derived from bookmarks – should be updated in
real-time.

4Squid is a free and open source caching proxy for the web supporting
HTTP, HTTPS, FTP and other protocols. http://www.squid-cache.org/

In terms of (2), client software such as the TaggyBear
browser add-on will direct a large and steady number of
queries towards the service. Whenever a user visits a new
web page, the add-on will trigger a request for rating infor-
mation, i.e. user, community, and system ratings. In order
to meet the demand, lookups of such ratings must be very
efficient. In addition, caching strategies should be put in
place to mitigate service load and improve scalability.

In terms of (3), the community ratings aggregated from
all public user ratings should meet quality requirements
such as being up to date and free of spam or junk data.
This means that the system should be designed in a way
that allows for efficient analysis of large amounts of data
and handle service growth.

3. Setup

3.1. Overview

Figure 2. System overview (simplified)

A simplified overview of the system is shown in figure 2.
For the sake of readability, we omitted components such as
reverse proxies or caches. The Linux-based system consists
of five main components as follows, all of which are or are
based on free and open source software:

• Web framework:
Pylons (http://www.pylonshq.com/)

• Data stores:
MySQL Community Server (http://www.mysql.com/),



Tokyo Cabinet and Tokyo Tyrant
(http://tokyocabinet.sourceforge.net/)

• Message buffer:
Pylog – Python logger, a custom development based
on Twisted (http://twistedmatrix.com/)

• Cluster for data aggregation and analysis:
Hadoop (http://hadoop.apache.org/core/)

• Client:
Add-on for Mozilla Firefox (http://www.mozilla.org/)

Based on the requirements outlined in section 2.4, we de-
cided to separate the system into two complimentary parts.
First, there is the “synchronous” part which is responsible
for handling user data including user ratings. Here, we pro-
vide TaggyBear users real-time access to their own data, i.e.
there is no delay on retrieving, adding, updating or deleting
their data. Additionally, flexibility with regard to features
and future feature additions to the TaggyBear service is im-
portant. We therefore chose an RDBMS as a data store,
namely the MySQL Community Server.

Second, there is the “asynchronous” part which is re-
sponsible for handling community and system ratings. The
idea is to buffer any incoming data (user bookmarks for ag-
gregation into community ratings) and periodically process
and clear these buffers through batch jobs. Here, lookup
performance and efficient data aggregation and analysis are
the primary objectives. Since the feature set in terms of
lookups is rather fixed, we do not need the flexibility of a
full-fledged RDBMS. Instead, we chose a hash table as a
data store for community and system ratings as it provides
constant-time O(1) lookup on average. We use the library
Tokyo Cabinet and its companion Tokyo Tyrant for this task.
Tokyo Cabinet is the successor of QDBM and like its an-
cestor written by Mikio Hirabayashi. Tokyo Tyrant adds a
network interface to Tokyo Cabinet so that the hash table
can be accessed remotely.

For data aggregation and analysis, we picked the Hadoop
framework which supports the MapReduce [2] distributed
computing metaphor and comes with its own fault-tolerant
distributed file system, HDFS . However, HDFS is designed
and tuned for reading and writing large files – writing rather
small incremental “updates” to HDFS whenever a user adds
a new bookmark (for later aggregation) is not optimal. We
worked around this problem by developing a lightweight,
persistent message buffer called Pylog based on the Twisted
networking framework.

In the following sections, we describe the TaggyBear
system and its components in greater detail.

3.2. Data flow

In this section, we describe the data flows for adding
data to and retrieving data from TaggyBear, respectively. It
should give the interested reader an insight into how Taggy-
Bear works behind the scenes so that the following sections
are easier to understand. We are only describing the data
flows for the API here (see section 3.4), but the flows for
the web interface outlined in section 3.3 are analogous.

The data flow for adding bookmarks is shown in figure
3. When a user submits a new bookmark through a client
software to the API, the request and its payload is first run
through several sanity checks and input filtering. If it passes
these tests, the bookmark is stored in the user’s bookmark
collection in the RDBMS and then, if the bookmark is pub-
lic, submitted to the message buffer (the RDBMS and the
message buffer are described in section 3.5) . In this case,
the API returns a 200 OK HTTP status code to the client.
If it does not passes the test, the API returns an appropriate
error code, for example 403 FORBIDDEN if user authen-
tication failed.

Figure 3. Data flow for adding book-
marks/ratings (WRITE). The dashed lines rep-
resent asynchronous tasks that are carried
out at a later time.

The previously described steps occur synchronously.
The processing of bookmarks in the message buffer is con-
ducted asynchronously at periodic intervals (currently every
30 minutes), when the buffered bookmarks will be copied
to the Hadoop cluster’s distributed file system, HDFS. As
described in section 3.6, MapReduce jobs will be started
to aggregate the public bookmarks into community ratings,
and the result of these jobs will be inserted into the hash
table through Tokyo Tyrant.

The data flow for looking up rating information is shown
in figure 4. When a client requests rating information about
a URL, the request is routed via the API to the hash table
(see section 3.5) which will return any available community



and system ratings. If the request comes from an authenti-
cated user, the RDBMS is also queried for any individual
user rating. Finally, the rating results are returned back to
the client.

Figure 4. Data flow for lookups (READ). The
dashed lines represent tasks that are only
carried out if the user is signed into Taggy-
Bear.

As one can see, unauthenticated requests – for example
from a web proxy configured to interface with TaggyBear
– will only result in one query against the hash table, the
result of which can be adequately cached because it is in-
discriminately valid for any user. For authenticated users, a
request will additionally result in a SQL query against the
RDBMS.

3.3. Web Interface – for humans

As we said previously, the main landing point for users
is the TaggyBear website. The website provides a number
of features such as managing and backing up your book-
mark collection, subscribing to RSS feeds, browsing your
network of friends, or looking up information about web
pages.

The website is implemented with the Python web frame-
work Pylons. Pylons is a very lightweight and very modu-
lar framework: It is easy to use your favorite Python com-
ponents and libraries for templating, database access, re-
quest dispatching et cetera. Most interestingly, Pylons is not
very tied to specific conventions with regard to data models
and database access and their interaction with other parts of

framework5. This is ideal for our intended setup involving
separated, heterogeneous data stores.

3.4. API – for computers

TaggyBear allows programmatic access to its data via a
public RESTful API [5]. REST, or Representational State
Transfer, refers to a collection of architectural principles
used for transfer of information over the web, but is now
used to describe simple RPC-based protocols using XML
over HTTP [6]. Its benefits – which are part of the rea-
sons why a lot of open source web applications are using
REST – include being lightweight and cacheable, which
helps to reduce server load and improves scalability. Ad-
ditionally, it uses the inherent HTTP security model, which
means that system operators can restrict certain methods
(e.g. DELETE) to certain URIs by firewall configurations.

Path prefix for REST API URIs: /api/rest/version
GET /items/hash get ratings for URL
POST /user/bookmarks add a new bookmark
PUT /user/bookmarks/hash update a bookmark
DELETE /user/bookmarks/hash delete a bookmark

Table 2. REST API features (excerpt). URLs
are represented by their MD5 hashes in the
REST API URIs.

Like the web interface, the TaggyBear API is imple-
mented with Pylons and is thus part of TaggyBear’s web
framework. The API features include adding, modifying,
retrieving and deleting data from TaggyBear (see table 2).
For example, the browser add-on uses the API to submit
new bookmarks to TaggyBear or query for rating informa-
tion about web pages.

3.5. Data storage

In this section, we talk about the data storage compo-
nents of TaggyBear. The current setup consists of three dif-
ferent data stores:

• RDBMS – MySQL

• Hash table – Tokyo Cabinet/Tokyo Tyrant

• Message buffer – Pylog

As we said previously, the main purpose of the RDBMS
is to store individual user data. We use the Python library

5A big advantage of web frameworks such as Ruby on Rails or Django
is that they do have very specific conventions how their components play
together, because it makes common development tasks so much easier. In
our case however, we need the flexibility that Pylons innately provides.



SQLAlchemy6 to interact with the MySQL database(s) of
TaggyBear. For the context of this paper, we do not go into
details on how to scale MySQL databases but refer inter-
ested readers to excellent works such as [13, 6].

The hash table is powered by Tokyo Cabinet. It pro-
vides constant-time O(1) lookup on average and O(log n)
in the worst case. Tokyo Cabinet is also very fast for writ-
ing data: Hirabayashi reported 1.5 seconds (elapsed time)
for storing 1 million records in a hash table database7. This
is an important criterion because we need to import large
numbers of community ratings into the hash table after data
aggregation. Tokyo Tyrant provides a network interface to
Tokyo Cabinet, which we use when querying the hash table
for community ratings via Pylons (see section 3.2 on data
flows). While there is a performance loss when accessing
Tokyo Cabinet databases through Tyrant, particularly when
using its HTTP or memcached-compatible interface, it is
still more than adequate for our needs. Tyrant also supports
features important for scalability and fault tolerance such as
replication, update logs, hot backup.

The message buffer is a special data store as it is only
used to buffer incoming bookmarks until they can be pro-
cessed and aggregated in the Hadoop cluster (see section
3.6). An important feature for us was persistent storage of
incoming messages to prevent data loss in case of problems
such as system crashes or power outages. We intended at
first to use a message queue for this task but could not find
a software implementation that satisfied our needs. Projects
such as Apache ActiveMQ8 or RabbitMQ9 did not meet
our lightweight or low-complexity requirements (by far).
We considered other alternatives such as the Ruby-based
Starling10, developed by the microblogging service Twitter,
but even Twitter itself is allegedly moving away from Star-
ling due to performance issues. At the end, we decided to
implement a simple yet lightweight and efficient message
buffer ourselves, Pylog, on top of the Twisted networking
framework for Python. Its only purpose is to accept “mes-
sages”, in our case properly encoded user bookmarks, sent
from Pylons via the web interface or the API and reliably
log them to file as quickly as possible. Unlike a message
queue, Pylog does not need to guarantee FIFO behavior.
Instead, we add timestamps to messages and let Hadoop do
the sorting during the periodical MapReduce runs11. When-

6SQLAlchemy is a SQL toolkit and Object Relational Mapper for
Python. Among other things, it allows for a more “Pythonic” interaction
with relational databases. http://www.sqlalchemy.org/

7http://tokyocabinet.sourceforge.net/spex-en.html
8http://activemq.apache.org/
9RabbitMQ is an implementation of AMQP, an emerging standard for

high performance messaging. http://www.rabbitmq.com/
10Starling is a persistent queue server compatible with the memcached

protocol. http://rubyforge.org/projects/starling/
11Hadoop is very good at sorting data. It recently won the Terabyte Sort

Benchmark in the record time of 209 seconds on a cluster of 910 nodes in
July 2008. http://developer.yahoo.com/blogs/hadoop/

ever it is time to start another data aggregation run, we in-
struct Pylog to rotate its buffer file which is then copied
to the Hadoop cluster for processing. We tested the per-
formance of Pylog on two identical machines with a Xeon
E5335 2.0 GHz Quad Core CPU and 4 GB of RAM running
Ubuntu Linux 8.04 Server Edition with the default Linux
kernel 2.6.2419-server. The machines were connected by a
switched, full duplex Fast Ethernet network. The average
throughput was 14,628 “bookmark messages” per second,
more than enough for our setup. If needed, more Pylog in-
stances can be added, and the sum of their buffer files be
jointly copied to the Hadoop cluster for the next MapRe-
duce runs.

3.6. Data aggregation

In this section, we talk about how individual user book-
marks are aggregated into joint community ratings for given
URLs through MapReduce jobs run on the Hadoop frame-
work. We focus our description on how we use Hadoop to
compute community ratings, but we also it for other tasks
such as web log analysis. We have chosen Hadoop for
data aggregation tasks because it allows for linear scaling
in terms of data processing, and it is built for use with com-
modity (rather inexpensive) hardware. If more processing
power is needed, it is generally sufficient to just add more
machines to the cluster.

Regarding Hadoop alternatives, there exist tools which
implement parts of the Hadoop functionality such as the
job queue TheSchwartz12 or the distributed filesystem
MogileFS13. However, neither of them comes in the neatly
integrated and ready-to-use package that is Hadoop. Addi-
tionally, the development and adaptation of Hadoop in the
wild have been showing a great momentum in the past, par-
ticularly after Hadoop became a top level Apache project
in 2008. A bonus for the Java-based Hadoop in practice is
also its so-called streaming utility, which allows develop-
ers to write MapReduce jobs in the programming language
of their choice. Finally, having a Hadoop cluster in place
enables us to perform tasks that are not directly related to
TaggyBear’s operation but still important, e.g. log file anal-
ysis or fault-tolerant storage of archived data.

We have implemented data aggregation for comput-
ing community ratings with two MapReduce jobs that are
chained together, i.e. the output of the first job is the in-
put of the second. Please remember that ratings are derived
from the tags with which a bookmark has been annotated
as described in section 2.2. The role of the first job is data
consolidation: It merges multiple submissions or modifi-
cations of bookmarks including any derived ratings of the
same URL by the same user into a single “update”. This can

12http://code.sixapart.com/trac/TheSchwartz
13http://danga.com/mogilefs/



easily happen in our setup because using a message buffer
can lead to “pending updates” per definitionem. The role of
the second job is the actual aggregation: It combines the rat-
ings of multiple users by URL. Optionally, we could filter
out known spammers during this step or promote the ratings
of known expert users.

The total time needed for data aggregation can be ap-
proximated by the following formula:

ttotal = tfs2hdfs(I, B)
+ tHadoop(I, B)
+ thdfs2fs(O,C)
+ tTokyoTyrant(O,C)

where tfs2hdfs(I, B) is the time needed to copy a mes-
sage buffer file of I bytes containing B bookmarks from
the local file system to HDFS14; tHadoop(I, B) is the
time needed to aggregate these bookmarks through Hadoop
MapReduce jobs; thdfs2fs(O,C) is the time needed to
copy the aggregation output of O bytes containing C com-
munity ratings from HDFS to the local file system; and
tTokyoTyrant(O,C) is the time needed to insert these com-
munity ratings into the hash database.

The times for data import and export, tfs2hdfs(I, B) and
thdfs2fs(O,C) are mainly network-limited, and can be han-
dled by proper network/rack setup.

The time for the actual aggregation via the two described
Hadoop MapReduce jobs, tHadoop(I, B), is influenced by a
variety of factors such as the number of Hadoop data nodes
(which serve HDFS data) and tasktracker nodes (which pro-
cess data) in the cluster, job parameters such as the num-
ber of reduce jobs to be run, and other factors such as
the size of intermediate data. Figure 5 shows benchmark-
ing results for a cluster of four machines connected by a
switched, full duplex Fast Ethernet network. Each machine
has an Intel Xeon E5335 2.0 GHz Quad Core CPU, 4 GB
of RAM, hardware RAID5 data storage, and runs Ubuntu
Linux 8.04 Server Edition with the default Linux kernel
2.6.2419-server. We used Hadoop version 0.18.0 released
in August 2008 for the benchmark. The results are aver-
aged over several runs with the slowest and fastest results
being removed from the samples.

Interestingly, we can see that the number of bookmarks
aggregated per second increases with number of input
bookmarks. This is mainly due to two reasons. First, there
is a rather fixed overhead for starting and running MapRe-
duce jobs with small input data. Second, if the input data is
not sufficiently large, less cluster nodes are used in general
for executing the job. In other words, more cluster nodes

14This includes the time needed for replication of data chunks to mul-
tiple nodes as configured by Hadoop’s dfs.replication parameter.
The default replication value is 3.

1000 10000 100000 1x106 1x107

number of bookmarks

0

5000

10000

15000

20000

25000

30000

bo
ok

m
ar

ks
 p

er
 s

ec
on

d

0

20

40

60

80

bo
ok

m
ar

ks
 p

er
 s

ec
on

d 
sq

ua
re

d

Figure 5. Benchmark for aggregation of pub-
lic user bookmarks into community ratings
through Hadoop MapReduce jobs. The solid
black line and the red dashed line show the
bookmarks per second and bookmarks per
second squared, respectively. Note the log-
arithmic scale of the X axis.

are only activated when needed but will then lead to higher
total throughput. Still, the time to process 100,000 book-
marks is less than one minute. At some point, the “accel-
eration” that Hadoop gets from increasing amounts of input
bookmarks starts to slow down until the performance actu-
ally degrades (relatively speaking). In our benchmark, this
inflection point is approximately at 5,000,000 bookmarks.
Most likely, this is caused by limitations in network I/O –
the cluster nodes cannot receive data fast enough and end up
idling, waiting for data. We expect that switching from Fast
Ethernet to Gigabit Ethernet would improve the benchmark
times. Nonetheless, the aggregation results are more than
satisfying for our needs: The cluster aggregates 1 million
new/updated bookmarks in about two minutes, and 10 mil-
lion bookmarks in less than ten minutes. Considering that
the most popular bookmarking service in the Internet to-
day, Delicious.com, received about 7.5 million bookmarks
in one month in December 2007 according to the study of
Wetzker et al. [12], we seem to be well-positioned in terms
of data aggregation.

Finally, tTokyoTyrant(O,C) is the time needed to insert
or update community ratings into the hash table through
Tokyo Tyrant. A so-called PUT operation is equivalent to
adding or overwriting an entry for a URL in the hash ta-
ble.15 We measured 8,372 PUTs/s on average on the same

15Generally, we have to query the caches or the hash table itself first in
order to retrieve the current (i.e. outdated) community rating of a given
URL in order to perform correct updates. Here though, we are more in-
terested in the write speed, i.e. PUTs, particularly because a write is more



hardware when using the Python memcached module as
client. If needed, the throughput could be increased by us-
ing Tyrant’s C/C++ API.

3.7. Caching

Caching is an important technique to reduce server load
and improve scalability. In our setup, we use server-side
and client-side caching at various places, some of which are
described in the following paragraphs.

On the server side, we employ the integrated caching
functionality of Pylons’ components. For the web interface
and the API, we make use of the built-in caching options of
the Mako template engine to cache generated content where
needed, e.g. the TaggyBear front page or RSS feeds. Alter-
natively, a reverse proxy such as Perlbal16 could be used to
cache generated web content17. For the time being though,
we use a reverse proxy in front of Pylons only for enabling
controlled and secured access from the outside web to the
Pylons server instance.

RDBMS queries to the MySQL database(s) are also
cached. Pylons provides a convenient interface to mem-
cached18, where we cache the results of expensive (slow)
SQL queries. We also use MySQL Proxy19 for query anal-
ysis, and are currently testing it for failover and transparent
load balancing of databases.

For the client side, we add ETag headers [4] to generated
web pages and API responses where appropriate. ETag only
helps if the entire page can be cached, and it can prove dif-
ficult to set up correctly in a load balancing scenario where
a client may request the same content but get a response
from different servers on each request. When used properly
though, ETag allows compatible web browsers – and HTTP
clients in general – to perform client-side caching of web
pages, thus further reducing server load.

The TaggyBear browser add-on benefits implicitly from
ETag support in Firefox, but the add-on also comes with
its own TaggyBear-specific, in-memory caching function-
ality for API requests in particular. The latter is needed
mainly due to GUI interactions. For example, the add-
on must handle tab switches in Firefox for processing and
updating the currently shown web page (e.g., showing the
warning popup in figure 1), and user interactions such as tab
switches should not result in unnecessary TCP connections

expensive than a read operation in our case.
16Perlbal is a Perl-based reverse proxy load balancer and web server.

http://danga.com/perlbal/
17On a related note, it is often helpful to use a “regular” web server such

as lighttpd, nginx, or Apache HTTP Server to handle static web content
such as images or CSS files.

18Memcached is a distributed non-persistent object caching system.
http://www.danga.com/memcached/

19MySQL Proxy is a simple program that sits between a MySQL client
and MySQL server. It can monitor, analyze or transform their communi-
cation. http://forge.mysql.com/wiki/MySQL Proxy

– like asking whether the client-side ETag is still current –
to the TaggyBear service.

4. Related Work

There exists a couple of community-driven, security-
related services in the Internet that work similarly to Taggy-
Bear or have similar goals, some of which will be described
below.

Vipul’s Razor20 is a signature-based, distributed network
for email spam detection and filtering. Basically, users can
collaboratively report spam and non-spam messages to the
service. Razor computes the signature for each message,
i.e. a checksum of the body’s content, and stores informa-
tion about the message in its database. Other users can then
query Razor and its database whether a given message is
known to be spam. The role of signatures of emails for
Razor and the MD5 hashes of URLs for TaggyBear serve
similar purposes. Both email signatures and URL hashes
are used to detect identical “objects”, where object identity
for Razor is “same message body” (i.e. actual content) and
“same URL” for TaggyBear (a pointer to content).

OpenDNS operates PhishTank21, a free service where
users can collaboratively share information about phish-
ing websites, i.e. websites that attempt to trick users into
providing personal information such as bank account data.
PhishTank allows users to submit and verify the alleged
phishing status of a web page, both via the PhishTank web
interface and through an API.

The design of TaggyBear differentiates from services
like Razor or PhishTank particularly in two areas. First, the
“opinion” of the user community (i.e. community ratings)
is not restricted to a binary feature, i.e. spam and non-spam,
phishing and non-phishing, or like and dislike. Instead,
TaggyBear leverages the full folksonomy and tagging vo-
cabulary of its users. The data aggregated from user input is
multi-dimensional in the sense that a user can freely decide
whether he’s interested in filtering by, say, the phishing
dimension, porn or webmail. Second, one of the main
goals of TaggyBear was to build a system that is not only
about security and filtering (which “restrict” the user’s In-
ternet experience in one way or the other even though its
done on behalf of the user), but one that also provides fea-
tures that actively help the user in his everyday tasks by en-
riching his Internet experience, or features that are simply
fun to use. Just the fact that TaggyBear is based on a social
bookmarking service – with all its benefits for end users –
extends TaggyBear to being more than a simple web filter.
Another example is the web search personalization compo-
nent we have developed [10]. Here, we leverage and apply
the same user input to a different problem domain which is

20http://razor.sourceforge.net/
21http://www.phishtank.com/



information retrieval. This allows a user to benefit from his
bookmarking activity not only with regard to bookmarking
per se but also by improving his search experience.

5. Conclusion and Discussion

The current architecture of TaggyBear seems to meet
its requirements adequately. Without free and open source
software and the support of the people creating and using it,
this would have been hardly possible. On the other hand,
we also made experiences that were not so pleasant, and
which we mention here as part of our case study report.
For example, the web framework Pylons has been a mov-
ing target. Quite often, new (even minor) releases depre-
cated part of the functionality, or ended up breaking existing
code right away. Most notably, the authentication & autho-
rization component, AuthKit, and the database components
come to mind in this regard, though problems caused by the
latter can partly be blamed on changes to SQLAlchemy. In-
complete, outdated, or confusing documentation also posed
problems, particularly for Hadoop, which resulted in sev-
eral blog articles of the first author about how to setup and
use Hadoop, part of which have been integrated into the
Hadoop wiki. Luckily, the situation has recently been im-
proving for Hadoop, meaning that more people outside of
the Hadoop developer community are able to benefit from
the software’s great functionality.

For the future, we have already several new develop-
ments for TaggyBear in mind. For example, to refine the
analysis of user bookmarking behavior in order to further
improve the quality of community ratings. Having a pow-
erful data processing tool like Hadoop at hand is a big plus
in this regard. Of course, we also want to extend the bench-
marking and profiling of TaggyBear, and improve the ar-
eas where proper scalability might become an issue, while
avoiding premature optimization as it is “the root of all
evil”.

We hope that the reader could find our descriptions and
reasoning interesting and, in particular, helpful for her or
his own practical programming and development projects.

References

[1] M. Ames and M. Naaman. Why we tag: motivations for
annotation in mobile and online media. In CHI ’07: Pro-
ceedings of the SIGCHI conference on Human factors in
computing systems, pages 971–980, New York, NY, USA,
2007. ACM.

[2] J. Dean and S. Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Sixth Symposium on Operating
System Design and Implementation (OSDI), 2004.

[3] R. J. Deibert, J. G. Palfrey, R. Rohozinski, and J. Zittrain.
Access Denied: The Practice and Policy of Global Internet
Filtering. The MIT Press, Cambridge, Massachusetts, 2008.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Rfc
2616: Hypertext transfer protocol – http/1.1.
http://www.w3.org/Protocols/rfc2616/rfc2616.html, 1999.
Network Working Group, W3.

[5] R. T. Fielding. Architectural styles and the design of
network-based software architectures. PhD thesis, Univer-
sity of California, Irvine, 2000.

[6] C. Henderson. Building Scalable Websites. O’Reilly Media,
Sebastopol, CA, USA, 2006.

[7] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Ht06, tag-
ging paper, taxonomy, flickr, academic article, to read. In
Proceedings of HT ’06, pages 31–40, 2006.

[8] M. G. Noll and C. Meinel. Design and anatomy of a so-
cial web filtering service. In Proceedings of 4th Int’l Con-
ference on Cooperative Internet Computing, pages 35–44,
Hong Kong, 2006.

[9] M. G. Noll and C. Meinel. Authors vs. readers: A compar-
ative study of document metadata and content in the www.
In Proceedings of 7th Int’l ACM Symposium on Document
Engineering ’07, pages 177–186, Winnipeg, Canada, 2007.

[10] M. G. Noll and C. Meinel. Web search personalization via
social bookmarking and tagging. In Proceedings of 6th In-
ternational Semantic Web Conference and 2nd Asian Se-
mantic Web Conference, Springer LNCS 4825, pages 367–
380, Busan, South Korea, 2007.

[11] M. G. Noll and C. Meinel. Exploring social annotations for
web document classification. In SAC ’08: Proceedings of the
2008 ACM symposium on Applied computing, pages 2315–
2320, Fortaleza, Ceara, Brazil, 2008. ACM.

[12] R. Wetzker, C. Zimmermann, and C. Bauckhage. Analyzing
social bookmarking systems: A del.icio.us cookbook, 2008.
To appear in ECAI 2008.

[13] J. Zawodny and D. J. Balling. High Performance MySQL:
Optimization, Backups, Replication, Load Balancing &
More. O’Reilly Media, Sebastopol, CA, USA, 2004.


